567 research outputs found

    Differential Good Arm Identification

    Full text link
    This paper targets a variant of the stochastic multi-armed bandit problem called good arm identification (GAI). GAI is a pure-exploration bandit problem with the goal to output as many good arms using as few samples as possible, where a good arm is defined as an arm whose expected reward is greater than a given threshold. In this work, we propose DGAI - a differentiable good arm identification algorithm to improve the sample complexity of the state-of-the-art HDoC algorithm in a data-driven fashion. We also showed that the DGAI can further boost the performance of a general multi-arm bandit (MAB) problem given a threshold as a prior knowledge to the arm set. Extensive experiments confirm that our algorithm outperform the baseline algorithms significantly in both synthetic and real world datasets for both GAI and MAB tasks

    Exposing the Functionalities of Neurons for Gated Recurrent Unit Based Sequence-to-Sequence Model

    Full text link
    The goal of this paper is to report certain scientific discoveries about a Seq2Seq model. It is known that analyzing the behavior of RNN-based models at the neuron level is considered a more challenging task than analyzing a DNN or CNN models due to their recursive mechanism in nature. This paper aims to provide neuron-level analysis to explain why a vanilla GRU-based Seq2Seq model without attention can achieve token-positioning. We found four different types of neurons: storing, counting, triggering, and outputting and further uncover the mechanism for these neurons to work together in order to produce the right token in the right position.Comment: 9 pages (excluding reference), 10 figure

    Environment Diversification with Multi-head Neural Network for Invariant Learning

    Full text link
    Neural networks are often trained with empirical risk minimization; however, it has been shown that a shift between training and testing distributions can cause unpredictable performance degradation. On this issue, a research direction, invariant learning, has been proposed to extract invariant features insensitive to the distributional changes. This work proposes EDNIL, an invariant learning framework containing a multi-head neural network to absorb data biases. We show that this framework does not require prior knowledge about environments or strong assumptions about the pre-trained model. We also reveal that the proposed algorithm has theoretical connections to recent studies discussing properties of variant and invariant features. Finally, we demonstrate that models trained with EDNIL are empirically more robust against distributional shifts.Comment: In Proceedings of 36th Conference on Neural Information Processing Systems (NeurIPS 2022

    GraphFC: Customs Fraud Detection with Label Scarcity

    Full text link
    Custom officials across the world encounter huge volumes of transactions. With increased connectivity and globalization, the customs transactions continue to grow every year. Associated with customs transactions is the customs fraud - the intentional manipulation of goods declarations to avoid the taxes and duties. With limited manpower, the custom offices can only undertake manual inspection of a limited number of declarations. This necessitates the need for automating the customs fraud detection by machine learning (ML) techniques. Due the limited manual inspection for labeling the new-incoming declarations, the ML approach should have robust performance subject to the scarcity of labeled data. However, current approaches for customs fraud detection are not well suited and designed for this real-world setting. In this work, we propose GraphFC\textbf{GraphFC} (Graph\textbf{Graph} neural networks for C\textbf{C}ustoms F\textbf{F}raud), a model-agnostic, domain-specific, semi-supervised graph neural network based customs fraud detection algorithm that has strong semi-supervised and inductive capabilities. With upto 252% relative increase in recall over the present state-of-the-art, extensive experimentation on real customs data from customs administrations of three different countries demonstrate that GraphFC consistently outperforms various baselines and the present state-of-art by a large margin
    • …
    corecore